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Abstract We present a new mixed-integer programming (MIP) approach to study certain
retail category pricing problems that arise in practice. The motivation for this research arises
from the need to design innovative analytic retail optimization techniques at Oracle Corpora-
tion to not only predict the empirical effect of price changes on the overall sales and revenue
of a category, but also to prescribe optimal dynamic pricing recommendations across a cate-
gory or demand group. A multinomial logit nonlinear optimization model is developed, which
is recast as a discrete, nonlinear fractional program (DNFP). The DNFP model employs a
bi-level, predictive modeling framework to manage the empirical effects of price elasticity
and competition on sales and revenue, and to maximize the gross-margin of the demand group,
while satisfying certain practical side-constraints. This model is then transformed by using
the Reformulation–Linearization Technique in tandem with a sequential bound-tightening
scheme to recover an MIP formulation having a relatively tight underlying linear program-
ming relaxation, which can be effectively solved by any commercial optimization software
package. We present sample computational results using randomly generated instances of
DNFP having different constraint settings and price range restrictions that are representative
of common business requirements, and analyze the empirical effects of certain key modeling
parameters. Our results indicate that the proposed retail price optimization methodology can
be effectively deployed within practical retail category management applications for solving
DNFP instances that typically occur in practice.
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1 Introduction

Product line pricing is an important business problem faced by retailers who employ dynamic
pricing strategies to generate incremental revenue benefits throughout the year. Elmaghraby
and Keskinocak (2003) review such dynamic pricing practices across industries and note
that retailers, among others, have in increasing numbers begun to utilize decision support
systems that leverage the large volume of detailed demand data to automate and optimize
pricing recommendations. In particular, the statistical modeling of the price elasticity of items
based on analyzing the effect of price changes of one product on its demand, or the demand
for another product, is a well-researched area. For example, Reibstein and Gatignon (1984)
estimate explicit pairwise inter-item cross-elasticity interactions to capture such effects and
to determine optimal prices. Among models that implicitly capture inter-item interactions,
the multinomial logit (MNL) model is a popular choice for discrete customer choice analysis
(McFadden 1974; Ben-Akiva and Lerman 1985), and has come into prominence for product
line pricing in the retail industry (Guadagni and Little 1983). In this context, the market share
of an item is a consequence of its relative attraction with respect to other competing items
(substitutes). A retailer would like to determine an optimal category pricing strategy to set
prices for items in a given category (e.g., soups, cold cereals) for the next few weeks. These
items are assumed to be substitutable in that they compete for the same customer dollar.
However, unlike the cross-elasticity model, the MNL model generally cannot capture the
market halo effects associated with complementary items (Train 1985). Several researchers
have also endeavored to use such statistically calibrated models to generate optimal pricing
recommendations. Hanson and Martin (1996) analyze the properties of the MNL-based opti-
mization model by treating prices as continuous variables. They recognize the non-concavity
of the profit objective function and present solution techniques for recovering a global opti-
mal solution. Reibstein and Gatignon (1984) attempt to derive profit-maximizing prices for
various categories of products based on certain statistically calibrated cross-elasticity models
for predicting demand.

The regular pricing strategy employed by category managers is different from ‘markdown
optimization problems’ that have been solved by retailers to determine optimal end-of-season
pricing for clearance of inventory of short life-cycle products such as fashion products (e.g.,
designer apparel). On the other hand, the models described in this paper are more likely to be
applicable to basic consumer items such as groceries. Also, business requirements generally
involve multiple objectives. A popular approach is to maximize gross margin for the product
category while also ensuring that the recommended prices result in category level sales and
revenue values that meet preset targets. These targets can be conveniently quantified relative
to the corresponding metrics at the original or current prices. Other constraints include price
limits, as well as inter-item pricing rules that constrain the prices of pairs of items (e.g., a store
brand soup should be priced 50c less than the corresponding national brand). In addition, the
prices are required to be competitive with respect to competitor prices, whenever such data is
available. In some situations, the number of price changes that can be recommended is also
limited.

Whereas MNL models can be used to predict market shares based on relative utilities or
attractions, the overall sales of the demand group (or category) itself does not change. To
overcome this shortcoming, we assume that we are given a second demand model for pre-
dicting category-level demands as a function of some representative price of the items in the
category. We briefly discuss the modeling impact of allowing multiple demand-subgroups
whose items are substitutable only by items within the same subgroup. Other approaches such
as the nested MNL model have also been considered for modeling multiple levels of customer
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choice (e.g., Silva-Risso and Ionova 2008). We assume that items are continually replenished,
so that there is no inventory constraint. Consequently, the terms ‘sales’ and ‘demand’ are used
interchangeably. Also, we do not analyze the sales impact of promotions or temporary price
cuts within our model. Discussions on the merits and shortcomings of empirical demand
models similar to the one adopted in this paper can be found in the marketing literature. For
brevity, we highlight one such issue. A fundamental assumption regarding the independence
from irrelevant alternatives (IIA) is a well-known drawback for MNL-based models, among
others (McFadden 1974; Tse 1987). In essence, the IIA assumption in the retail category
pricing context suggests that the ratio of the number of customers choosing any two sub-
stitutable items in the product line would be unaffected by the utilities of all other items in
that set. On the other hand, the empirical results presented in Guadagni and Little (1983),
based on an MNL model that was calibrated using market data for a consumer item (ground
coffee), did not indicate significant or systemic estimation errors that were attributable to the
IIA assumption.

The focus of the present work is to formulate a viable optimization model that can be
applied to a wide variety of retail pricing contexts and to prescribe an effective solution
methodology, assuming that we are given statistically calibrated demand models, and also
that these demand models are compatible with the user. Our proposed model is based on
real-world retail pricing problems faced at Oracle Corporation. Specifically, we derive a
mixed-integer programming (MIP) formulation for optimizing an MNL model-based objec-
tive function in the presence of a discrete price ladder and other side-constraints, while also
considering an extraneous competitive response to pricing, and we provide computational
results on some realistic, randomly generated instances.

The remainder of this paper is organized as follows. In Sect. 2, we present an MNL-based
margin optimization model for retail pricing that employs a dynamic category-level demand
model and includes thresholds for sales and revenue goals. We propose a sequence of trans-
formations using the RLT approach that enables us to initially pose the formulated model
as an DNFP, and subsequently, as an equivalent MIP. In Sect. 3, we present some sample
computational experience for the proposed solution methodology using realistic, synthetic
data sets. Finally, Sect. 4 summarizes our findings and delineates specific directions for future
work in this area of research.

2 MNL-based optimization model

In this section, we develop an MNL-based optimization model for category pricing in
the retail industry. The scenario analyzed is as follows. Consider a retailer who has to set the
baseline (or regular) price levels for some or all the active items in a given category for the
next few months, as part of a merchandise planning process. The category manager has to
make multiple, coordinated pricing decisions, proactively taking into account the impact of
a price change on the sales of other items within the category, as well as any (extraneous)
market response. Moreover, the recommended prices have to satisfy several category-level
objectives such as profitability, sales, and revenue (e.g., to maximize gross margin while
ensuring that the total sales and revenue are within 10% of the current value), and have to
be selected from within a limited discrete price ladder (e.g., be within 20% of the current
price and end with ‘9’ cents). In addition, items have to be priced relative to certain attri-
butes such as brand type (e.g., a store brand tomato soup should be at least a dollar less than
the price of the corresponding national brand), and quantity (e.g., a six-pack of diet-soda
versus a two-liter bottle of diet-soda), among others. For a more detailed discussion of the
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requirements for category pricing, and dynamic pricing methods employed by retailers in
general, we refer the reader to Elmaghraby and Keskinocak (2003).

Items can represent stock-keeping units (SKUs), product subclasses, or product classes
within the category, depending on the level of aggregation in the merchandise hierarchy at
which the analysis is performed by the category manager. For simplicity, we assume that
we are optimizing prices of SKUs at the store-level of the location hierarchy, noting that the
models in this paper can be readily extended to manage higher levels of aggregation (e.g., at
the zonal level). Later in the paper, we briefly address more general situations faced by cat-
egory managers such as the need to jointly optimize multiple categories that are inter-linked
by pricing constraints and/or objectives, or manage several distinct subsets of substitutable
items within the same category.

We first present an MNL nonlinear optimization model to represent this category pricing
problem. Consider the following notation:

n = number of substitutable items in the category or demand group.
m = number of discrete price points or price levels per item.
P = set of points in the price ladder.
di = unit cost associated with item i.
p0

i = initial (or original) price of item i.
pi = recommended price for item i (principal decision variables). Note that pi

can take on only one of certain pre-generated values (positive) p̄i j , j =
1, . . . ,m,in the price ladder for item i, ∀ i=1, …, n.

zi j =
⎧
⎨

⎩

1 if pi = p̄i j

0 otherwise,∀ j = 1, ..,m, for each i = 1, .., n·
(Binary Decision Variables)

.

(li , ui ) = lower and upper bounds on the price for item i.
p, l, u = vectors having respective components pi , li , ui .

θ = category-level sales (or demand) value (function of the variables pi , as
given by (1b) below).

θ0, R0 = category-level (initial) sales, and revenue value, respectively, obtained by
fixing prices of items at the initial prices p0

i ,∀i = 1, . . . , n.
� = price-elasticity parameter for category-level demand.

Ui (pi ) = deterministic component of the utility of item i (function of the variables
pi ).

μi , λi = coefficients used in the utility expression for item i: Ui (pi )=μi + λi pi .
eUi (pi ) = measure of the attractiveness of item i to a consumer.

eUi (pi )
∑n

i = 1 eUi (pi )
= relative attractiveness measure of the MNL-predicted market share of item i

within the category or demand group (Ben-Akiva and Lerman 1985).
α, β = coefficients used for setting category-level targets for sales, and revenue

thresholds, respectively, which represent the respective threshold fractions
of the initial sales and revenue values to be satisfied.

K = number of inter-item constraints. These constraints manage relative “price
movements” within item pairs (e.g., to maintain a consistent price-brand
relationship).

aik , b jk , ck = inter-item constraint coefficients (involving items ik and jk for each k=1,
…, K).
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vi j ≡ eUi ( p̄i j ) = eμi +λi p̄i j ,
ri j ≡ vi j p̄i j , and
gi j ≡ ri j − vi j di = vi j ( p̄i j − di ), ∀i = 1, . . . , n, j = 1, . . . ,m.

We can then pose the category pricing problem as the discrete nonlinear fractional program-
ming problem DNFP given below:

DNFP: Maximize

∑n
i = 1

∑m
j = 1 gi j zi j

∑n
i = 1

∑m
j = 1 vi j zi j

θ (1a)

subject to :

θ = θ0

(
n∏

i = 1

pi

p0
i

)ψ
n

(1b)

θ ≥ αθ0 (1c)
n∑

i = 1

m∑

j = 1

ri j zi jθ ≥ (βR0)

n∑

i = 1

m∑

j = 1

vi j zi j (1d)

aik pik ≤ b jk p jk + ck, ∀k = 1, . . . , K (1e)
m∑

j = 1

zi j ,= 1, ∀i = 1, . . . , n (1f)

m∑

j = 1

p̄i j zi j = pi , ∀i = 1, . . . , n (1g)

z binary. (1h)

Problem DNFP aims to determine the market share for each substitutive item in the cat-
egory, while optimizing multiple objectives such as gross margin, sales, and revenue, and
also considering the dynamic response of category-level sales to price changes and pricing
rules. More specifically, it determines the price points in the price ladder for each item i that
maximize the gross margin (1a) for the category. The objective function (1a) represents the
sum of the market share-weighted item margins. The denominator in (1a) represents the sum
of the MNL-based item-utility function values attained (based on the selected price points in
the ladder), and is always positive-valued. The numerator in the ratio in (1a) represents the
sum of the individual item profits realized ( p̄i j − di )weighted by the corresponding utility
function values (vi j ). If we assume that items are always priced more than their unit cost
values (li > di ,∀i = 1, . . ., n), then the numerator is also guaranteed to be positive-valued.
Hence, the ratio yields the gross weighted profit per item, which is multiplied by the total
category-level demand θ to compose (1a). The price effect on sales is captured using an
empirical predictive model (1b) that attempts to explain the overall category sales as some
nonlinear function of the geometric mean of the scaled prices of the items in the category
based on an estimated value for the price elasticity parameter (�) for category-level sales.
Constraint (1c) ensures that the sales for the category does not fall below a given percentage of
the original sales value, while Constraint (1d) imposes a similar restriction on revenue. Con-
straint (1e) captures simple inter-item pricing rules between items ik and jk,∀k = 1, . . . , K ,
as for example, rules that impose relative brand-price relationship, and Constraint (1f) selects
a particular price from the designated price ladder for each item. Constraint (1g) identifies
the price of each item based on the selected price point. (These relationships can be used to
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substitute the pi -variables out of the model formulation.) Finally, Constraint (1h) enforces
the binary logical restrictions on the z-variables.

Tawarmalani et al. (2002) present MIP reformulations for 0–1 hyperbolic programs (that
resemble Problem DNFP for a fixed value of θ ) and prescribe a global optimization scheme
that employs a reformulation and linearization step at the nodes of a branch-and-bound tree
to recover a global optimal solution. An alternative reformulation procedure and solution
methodology is presented below.

We first apply the Charnes and Cooper transformation (1962) to (1a), while retaining the
binary restriction on the z-variables to transform DNFP into an equivalent semi-continuous
problem. Toward this end, denote

y ≡ θ
∑n

i=1
∑m

j=1 vi j zi j
, (2a)

and let

xi j ≡ yzi j ,∀i, j. (2b)

Note that vi j xi j/θ represents the market share of item i priced at p̄i j , while vi j xi j repre-
sents the corresponding sales value. We next utilize the Reformulation-Linearization Tech-
nique (RLT) (Sherali and Adams 1999) that, in effect, linearizes the resulting bilinear terms
yzi j in the objective function after applying (2), and provides an alternative representation
for the semi-continuous variables xi j (which take on values of y or 0 by (2b) and (1h)).
Accordingly, we multiply (1a, 1d–1f) by (y > 0), but also retain (1f, 1h) as well as the
original constraints (1e) to tighten the underlying relaxation, while eliminating the

pi -variables using (1g). For conveniently representing (1b), we take the logarithms
(to the Naperian base e) in (1b) and introduce the relationship w ≡ ln(θ). Furthermore,
for enabling the linearization of (2b), we impose lower and upper bounds ymin and ymax on
the variable y, which are readily derived using (2a) and (1f, 1h), for example. This yields the
following equivalent retail price optimization program (RPO), where (3b) represents (2a);
(3c–3e) represent (1b, 1c) (where we have introduced an implied upper bound θmax on θ
in (3i) with accompanying bounds on w for subsequently linearizing (3c)); (3f) represents
(1d); (3g, 3h) represent (1e); and the remaining constraints (3i–3m) represent (1f, 1h) along
with the RLT linearization of (2b). (Also, recall that (1g) has been used to eliminate the
pi -variables throughout the problem.)

RPO: Maximize
n∑

i=1

m∑

j=1

gi j xi j (3a)

subject to:

n∑

i=1

m∑

j=1

vi j xi j = θ (3b)

w = ln(θ) (3c)

w = ln(θ0)+ ψ

n

n∑

i=1

m∑

j=1

ln

(
p̄i j

p0
i

)

zi j (3d)

αθ0 ≤ θ ≤ θmax, ln(αθ0) ≤ w ≤ ln(θmax). (3e)
n∑

i=1

m∑

j=1

ri j xi j ≥ βR0 (3f)
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aik

m∑

l=1

p̄ik l zik l ≤ b jk

m∑

l=1

p̄ jk l z jk l + ck, ∀k = 1, .., K (3g)

aik

m∑

l=1

p̄ik l xik l ≤ b jk

m∑

l=1

p̄ jk l x jkl + ck y, ∀k = 1, .., K (3h)

m∑

j=1

zi j = 1, ∀i = 1, . . . , n (3i)

m∑

j=1

xi j = y, ∀i = 1, . . . , n (3j)

xi j ≤ ymaxzi j , ∀i = 1, . . . , n, j = 1, . . . ,m (3k)

xi j ≥ yminzi j , ∀i = 1, . . . , n, j = 1, . . . ,m (3l)

ymin ≤ y ≤ ymax, zi j binary, ∀i, j. (3m)

To facilitate the solution of Problem RPO using off-the-shelf MIP packages (such as
CPLEX or GUROBI), we next linearize (3c), i.e., θ = ew, over the bounded rectangular
region (3e) by restricting θ to lie below an S-segment piecewise linear inner approxima-
tion to the convex function ew over the range [ln(αθ0), ln(θmax)] (based on the restriction
αθ0 ≤ θ ≤ θmax), as well as to lie above some T tangential supports to this function sampled
at points wt , t = 1, . . ., T, in the aforementioned range. This yields the following relation-
ships that are used (henceforth) to replace Constraint (3c), where θt ≡ ewt ,∀t = 1, . . . , T .

θ ≤ PiecewiseLinear(w, S) (4a)

θ ≥ θt [1 + w − log(θt )], ∀t = 1, . . . , T, (4b)

where PiecewiseLinear (w, S) denotes the aforementioned S-segment upper-bounding piece-
wise linear approximation to θ = ew . We used the piecewise linear modeling capability
available within ILOG’s CONCERT modeling language for our computational experiments,
where the resultant MIP model generated by CONCERT employs S auxiliary binary vari-
ables for the internal representation of PiecewiseLinear (w, S). We report on the effect of
experimenting with different values of S in the next section.

Our preliminary empirical analysis showed that the resulting optimal value of θ is pri-
marily driven by the upper-bounding approximation. Consequently, we simply set T = 2,
by providing tangential supports only at the end-points, ln(αθ0) and ln(θmax), respectively.
However, in practice, it is not guaranteed that the upper bounding approximation will always
be active at optimality. Managers often add additional competitive price-matching constraints
that tend to drive sales values of some items down if the corresponding competitor price is
sufficiently high. Unprofitable items tend to have a similar effect on sales because of the
margin-based objective (1a). On the other hand, some retailers may want to retain a limited
inventory of “loss leaders” among these unprofitable items in their display shelves to induce
in-store traffic. It is possible that a tradeoff resulting from a combination of such conditions
can yield an optimal value of θ that lies strictly below the upper bounding functional.

In lieu of the piecewise linear approximation for θ , we can design an iterative process
to determine a value of θ at which the corresponding (locally) optimal price values (nearly)
satisfy (1b). In particular, when the structure of the empirical predictive model for category-
level sales increases in complexity, such an iterative scheme may be the only practical choice
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available. Our empirical analysis based on the category-level sales model (1b) indicated that
the foregoing MIP formulation derived from the prescribed piecewise linear approximation
for θ was computationally adequate for obtaining relatively quick, good quality solutions for
Problem RPO via the commercial software package CPLEX (version 10.0). Hence, we do
not pursue such an iterative approach further.

Another important implementation issue is to derive a tight, valid bounding interval
[ymin, ymax] for the variable y. A simple way to determine an upper (lower) bound on y
is via an optimal solution to the LP relaxation of Problem RPO, but replacing the objective
function with one that maximizes (minimizes) y. However, rather than relying solely on fea-
sibility considerations, it would be advantageous to derive these bounds while also taking
into account the effect of the objective function (3a). Hence, we heuristically obtain a good
quality feasible solution to Problem RPO having an objective function value ν (e.g., using
the node-zero analysis embedded within CPLEX), and we then impose the valid inequality:

n∑

i=1

m∑

j=1

gi j xi j ≥ ν (5)

within (3), while maximizing (or minimizing) y. A complementary approach to determine a
potentially tight upper bound value for y is to employ the arithmetic mean–geometric mean
inequality on the relationship (2a) to get, noting (3i, 3m) and the definition of vi j :

y = θ/n
1
n

∑n
i=1

∑m
j=1 vi j zi j

≤ θ/n

∏n
i=1

[∑m
j=1 vi j zi j

] 1
n

= θ/n
[∏n

i=1 e
∑m

j=1 Ui ( p̄i j )zi j
] 1

n

(6)

and accordingly maximize the logarithm of the right-hand side of (6), i.e., noting (3c), we

maximize

⎧
⎨

⎩
w − 1

n

n∑

i=1

m∑

j=1

Ui ( p̄i j )zi j − ln(n)

⎫
⎬

⎭
, (7)

subject to the constraints of Problem RPO. We use the most restrictive resultant interval
[ymin, ymax] obtained from these approaches to generate Model RPO.

Remark 1 The underlying MNL model in (1) assumes that all the items in the demand group
are substitutes. However, we frequently encounter customer data sets in practice that consist
of several isolated demand subgroups (sub-categories), each of which contains items that
are substitutable only by items within that sub-category. Allowing each such sub-category
to be governed by its own statistically calibrated item-level MNL model, as well as its own
sub-category-level demand model, helps improve the empirical performance of the overall
predictive modeling framework. On the other hand, the items are required to have their prices
jointly optimized across the group whenever items across subgroups are linked via the con-
straints of Problem DNFP. Given the index set G of such subgroups, it can be shown that the
following generalization (8a, 8b), where we substitute

yh = θh
∑n

i=1
∑m

j=1 v
h
i j zi j

, ∀h = 1, . . . , |G| (8a)

and let

xh
i j = yh zh

i j , ∀h, i, j, (8b)
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can be employed to derive a linear objective function Z(G), given by:

Maximize Z(G) =
|G|∑

h=1

n∑

i=1

m∑

j=1

gh
i j xh

i j , (8c)

where the x-, z- and y-variables, and the associated auxiliary coefficients are now identified
by additionally indexing them based on their corresponding demand subgroup (h). Likewise,
the corresponding side-constraints can be linearized to recover an MIP formulation similar
to (3). The resulting MIP formulation can also be used to determine globally optimal pricing
recommendations across several demand groups inter-linked by the constraints of Problem
DNFP. These “superset” problem instances can involve several thousand pricing decision
variables and inter-item pricing constraints, perhaps occurring in a block-diagonal pattern.
We recommend the study of this extension for future research.

3 Computational tests

We present computational results in this section using realistic, randomly generated instances
of Problem RPO. These individual instances were chosen to be representative of those arising
from typical business requirements that we encountered at Oracle Corporation, and do not
include peculiar instances that occur infrequently in practice, and that need to incorporate
special practical safeguards within an industrial application, a discussion of which is be-
yond the scope of this paper. In reality, the regular price of basic items is changed relatively
infrequently by retailers (promotions and discounts are used to make tactical price changes).
Furthermore, such price changes are typically restricted to within 10–30% of the current
price. Another common business requirement is that we obtain quick and good quality feasi-
ble solutions to enable rapid what—if kinds of analyses, while also ensuring that the solution
methodology is reasonably accurately sensitive to changes in specification of the input.

Data generation and preprocessing:

(a) Synthetic data sets were generated for varying sizes, initial prices, initial sales, costs,
MNL utility coefficients, and constraint settings.

(b) The category level price elasticity coefficient (�) was assumed to be −2.0.
(c) The price ladder was generated using tables similar to the one shown below, while

allowing a maximum variation of 30% from the original price value (p0), and with the
price points ending with the “magic number” 9 (cents). For example, an item that has
to be priced between $45 and $55 will have the following price points:
45.49, 45.99, 46.49, 46.99, 47.49, 47.99, 48.49, 48.99, 49.49, 49.99, 50.99, 51.99, 52.99,
53.99, and 54.99.

Ladder Low value ($) High value ($) Increment (cents)
1 0.00 9.99 10
2 10.00 49.99 50
3 50.00 99.99 100

(d) The upper and lower bounds for θ were tightened and the piecewise linear interpolation
was generated over the resultant interval using a value of S = 9 (based on 10 uniformly
spaced sample points, including the end points). We experimented with using fewer
interpolating points and present some comparative results for these instances.
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(d) The initial values for ymin and ymax were obtained as described in Sect. 2. In all cases,
the geometric mean-based value for ymax was smaller than that obtained by maximizing
y, subject to the constraints of Model RPO.

(d) The value for ymin(ymax) was repeatedly tightened via LPs by minimizing (maximiz-
ing) y, while revising the constraints (3k)–(3m) based on the best lower and upper lower
bounds currently available for y, until the improvement in the bounds between itera-
tions was less than 5%. On average, this iterative procedure reduced the initial value of
(ymax − ymin) by about 25%, and no more than two iterations were required in all cases.

(d) Whenever feasible, we employed a node-zero based analysis to generate (5) and incorpo-
rated this constraint within the foregoing sub-problems for minimizing and maximizing
y so as to further restrict ymin and ymax based on optimality considerations. We present
some computational results to assess the incremental value of accommodating (5) in
this step.

All runs were made on a 3.0 GHz Pentium 4 processor PC having 2 GB of RAM. The LP
and MIP solvers available in CPLEX 10.0 were used to solve the various optimization (sub-)
problems (we did not have access to a more recent version of CPLEX at Oracle Corporation).
A limit of 2,000 enumerated branch-and-bound nodes, and a relative optimality gap target
of 5% were used.

Table 1 presents results for randomly generated instances of problem RPO for different
values of n as listed in Column 1. The corresponding number of bound-feasible price points
(averaged over the n items) and the number of inter-item constraints generated are listed in
the second and third columns, respectively. The optimal objective function value obtained
for the LP relaxation of RPO is given in the fourth column, followed by the best feasible
MIP objective function value achieved, in Column 5. The CPU seconds consumed by the
overall approach is noted in Column 6, along with the number of branch-and-bound nodes
enumerated (Column 7) and the relative optimality gap at termination (Column 8).

Feasible solutions within the preset optimality tolerance of 5% were obtained for all but
one instance using the proposed MIP formulation. The optimal objective function value for
the LP relaxation of Problem RPO was always within 8% of the best achieved MIP value. The
preset branch-and-bound node enumeration limit of 2,000 was reached only for the largest
instance, when the optimality gap at termination was about 6.4%.

To examine the effect of (5) on the solution quality and efficiency via the derivation of
tighter bounds on y, we set ν equal to the best objective value found in Table 1 and added (5)

Table 1 Computational results for RPO

n Avg. m K LP MIP Time (s) Nodes Opt. gap (%)

5 36 5 9,066 8,655 1 13 4.5

10 20 30 14,572 14,247 1 13 2.2

20 29 80 33,467 31,787 6 115 4.7

50 23 150 70,889 68,086 15 59 4.1

100 22 300 145,382 143,469 45 40 1.3

200 24 600 283,522 270,150 260 100 4.8

500 28 1,500 783,622 728,660 1,685 1,000 4.9

1,000 28 3,000 1558,868 1462,010 7,020 2,000+ 6.4

+ Branch-and-bound node enumeration limit reached

123



J Glob Optim (2010) 48:263–277 273

while minimizing and maximizing y. Table 2 analyzes the incremental impact of (5), with
respect to the values presented in Table 1, on the achieved solution quality for a relative opti-
mality tolerance target of 5%. For comparative purposes, the last column in Table 2 lists the
best optimality gap achieved after reaching the preset node limit for each instance when we
used a relatively tight optimality tolerance of 0.01%. On average, we observed a significant
increase (about 10%) in the value of ymin, and a relatively smaller reduction (less than 1%)
in ymax.

As can be seen in Table 2, when we solved (3) using the tighter bounds for y, we were able
to significantly reduce the optimality gap at termination for most instances in comparison
with Table 1. The largest instance in Table 1 could now be solved to completion, yield-
ing a solution within 0.2% of optimality. On the other hand, we observed relatively limited
improvement in the 20-item instance in Table 2, and were unable to reduce the optimality
gap below 4.2% even after setting the optimality tolerance to 0.01% and enumerating 2,000
branch-and-bound nodes. However, using this tighter tolerance, all the other instances were
solved to near-optimality (within 1.4%).

Note that it is possible to iteratively improve upon any incumbent feasible solution to
(3) by employing the best achieved objective function value within (5) and repeating the
aforementioned procedure until we obtain a solution within the desired level of optimality
tolerance. In practice, a 5% optimality gap is generally acceptable, given the uncertain nature
of the demand model parameters, among other factors.

Next, we varied the value of S to analyze the overall effect of employing different degrees
of approximation for the piecewise linear representation of θ . Table 3 presents computational
results for S ∈ {1, 2, 4} (The results in Table 1 pertain to S = 9).

The trend in the achieved optimality gap values across Tables 1 and 3 for a given instance
of Problem RPO indicates a general improvement as S decreases. Furthermore, in most
instances, a smaller value for S required relatively less CPU time to achieve a similar solu-
tion quality. For example, using a value of S=1 enabled the largest instance to also be solved
within the desired optimality tolerance (in fact, the achieved objective function value for all
instances was within 3.1% of optimality), while consuming a fraction of the CPU time used
for the corresponding runs made for larger values of S. However, it is not guaranteed that
a higher MIP objective function value obtained by using a smaller value for S will always
translate into an equally improved value in the actual gross margin (1a) using the exact value

Table 2 Computational results for RPO while using (5) to bound y

n LP MIP (3%
optimality
tolerance)

Time (s) (3%
optimality
tolerance)

Nodes (3%
optimality
tolerance)

Opt. gap
(%) (3%
optimality
tolerance)

Opt. gap
(0.01% tol.)

5 9,046 8,741 1 33 3.3 1.4

10 14,563 14,251 1 43 0.01 0.01

20 33,467 31,690 8 88 4.9 4.2

50 70,884 68,147 22 100 0.1 0.01

100 145,338 143,544 45 100 1.2 0.01

200 283,204 271,487 157 200 4.3 0.05

500 782,005 729,743 1,456 753 0.3 0.1

1,000 1,557,275 1,464,170 10,805 1,640 0.2 0.1
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Table 3 Computational results for RPO, for S=4, 2, and 1

n S=4 S = 2 S=1

Time (s) Opt. gap (%) Time (s) Opt. gap (%) Time (s) Opt. gap (%)

5 1 3.0 1 1.9 1 3.1

10 1 2.0 1 1.5 1 0.4

20 12 4.0 7 3.5 2 1.3

50 17 3.8 10 3.1 3 0.3

100 56 1.1 54 0.8 10 0.3

200 358 4.2 253 3.2 34 1.0

500 1,678 4.9 1,598 4.9 371 0.5

1,000 6,960 6.0 6,480 5.5 3,900 0.2

Table 4 Relative
over-estimation (error) in
category level sales for various S

n S = 9 (%) S=4 (%) S=2 (%) S=1 (%)

5 0.02 0.59 1.92 1.17

10 0 0.09 0.7 2.0

20 0.03 0.44 1.47 4.36

50 0.03 0.18 1.26 3.77

100 0.05 0.21 0.51 1.21

200 0.07 0.42 1.51 4.15

500 0.08 0 1.82 7.26

1,000 0.04 0.35 0.85 7.19

of θ via (1b) for the prices obtained. Table 4 tracks the relative error between the piecewise
linear estimate of θ (which was active at optimality in all our test instances) and the true cat-
egory-level sales (given by (1b)) for all instances presented in Tables 1 and 3, while Table 5
compares the trends in the recalculated (actual) gross margin values for these instances. The
first column in Table 5 gives the actual gross margin dollars (i.e., the numerical objective
function value) for S = 9, and the remaining columns tabulate the relative percentage increase
or decrease in the gross margin values for other values of S, with respect to the values in the
first column.

The results presented in Table 4 indicate that the choice of S=9 resulted in a relative error
of less than 0.08% for all instances, whereas using S=4 limited the corresponding error to
within 0.6%. A value of S=2 corresponds to a two-segment piecewise linear approximation
for θ , and this increased the relative error to between 0.7 and 2%. Setting a value of S=1
essentially seeks to represent θ as a convex combination of its minimum and maximum val-
ues, thereby obviating the need for any additional binary variables to model the nonlinearity
of θ as a function of w. The corresponding over-estimation in the category sales value was
relatively quite high in this case, and ranged between 1.1 and 7.3%.

Any apparent or real improvement in the gross-margin obtained by reducing the value of
S has to be weighed against any possible degradation in the achieved values of the secondary
objectives specified via the side-constraints. For example, when S was reduced from 9 to 4,
we observed that the true gross margin value improved or remained the same in six of the
eight instances and yielded a relatively favorable tradeoff as far as the primary objective is
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Table 5 Optimal gross margin
(1a) for various values of S

N S = 9 S=4 (%) S=2 (%) S = 1 (%)

5 8,653 0.94 0.64 0.44

10 14,247 −0.04 −0.01 −0.11

20 31,776 0.35 −0.21 −0.88

50 68,064 0.13 −0.27 0.03

100 143,392 0 0 −0.15

200 269,967 0.31 0.12 −0.13

500 728,095 −1.1 −0.02 −0.35

1,000 1,461,380 0.18 0 −0.94

concerned, while a further reduction of the value of S to 2 resulted in a drop in the actual
gross margin value in four instances (see Table 5). Finally, when S was reduced to 1, the
improved MIP objective function values did not translate into a true improvement in most
(six) of the instances, with only a marginal improvement being observed in the other two
instances. Whereas the values of S=2 and S=1 resulted in either an improved gross margin,
or a relative reduction in gross margin value of less than 1% for all instances when compared
to the corresponding values for S=9, we observed that the corresponding errors in any active
side-constraints pertaining to sales, revenue, and CPI thresholds were relatively high (these
results are not displayed for brevity). For example, the overestimation of the category sales
value given in Table 4 is a direct measure of the achieved error in Constraint (1b). On the other
hand, it is possible that a simple linear interpolation model for θ (using S=1) is acceptable for
rapid ‘ball-park’ profitability assessments for typical real-life applications, especially when
the user is mainly interested in getting a feel for the financial impact of allowing a limited
number of pricing tweaks.

Finally, to assess the empirical effectiveness of the proposed approach on the average, we
tested the overall procedure on ten randomized instances for each of the problem sizes shown
in Table 1 (using a more recent version of CPLEX (11.2) that became temporarily available
to us at Oracle Corporation). To generate these instances, we randomly varied the item costs,
original prices, initial sales values, the category elasticity value, and utility coefficients, such
that the corresponding LP-relaxation of (3) was feasible. We chose a value of S = 4, based
on the discussion of the results in Table 4 in the previous paragraph, and without employing
(5) to improve the bound on y. We imposed an LP subproblem enumeration limit of 2,000
if a feasible solution was at hand at that stage of the branch-and-bound analysis. Otherwise,
we stopped at the first feasible integer solution beyond the 2,000-subproblem node limit
in concert with an absolute subproblem enumeration limit of 10,000. The desired (relative)
optimality tolerance was set at 0.01%. Each row in Table 6 presents the average values for the
corresponding problem size in the following order from left to right: number of LP subprob-
lems analyzed, CPU seconds consumed, index of the subproblem at which the first feasible
integer solution was obtained, achieved optimality gap, the achieved error in the sales value,
and finally, the percentage of instances that reached the 2,000-node enumeration limit. These
average statistics only include instances for which a feasible integer solution was available
at the end of the procedure. In all but one 1,000-item instance, a feasible integer solution was
found before reaching the absolute node limit, and therefore, the last row of Table 6 reports
values averaged over the nine instances for which a feasible solution was actually obtained
for that problem size.
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Table 6 Average computational effectiveness analysis of (3) using CPLEX 11.2

n Nodes Time (s) First feasible
node index

Opt. gap (%) Error (%) 2,000-Node
limit (%)

5 43 0.07 16 0.01 0.14 0

10 32 0.08 189 0.01 0.12 0

20 196 3.3 43 0.01 0.09 0

50 536 32 75 0.01 0.11 0

100 1,487 193 109 0.03 0.09 20

200 610 291 55 0.04 0.12 10

500 2,000 4,632 690 0.79 0.12 100

1,000 4,252 18,127 3,514 2.21 0.13 100

We can observe from Table 6 that, on the average, all instances having up to 500 items in
the category could be solved to within 1% of optimality before reaching the first (2,000-node)
enumeration limit. For small problem sizes (50 items or less), we were able to find the glob-
ally optimal solution in every single instance, while for medium sized instances (200 items or
less), we were able to recover the global optimum in all but three instances. Furthermore, in
all but one instance corresponding to the largest (1,000-item) data set, the achieved objective
function value was within 2.21% of optimality on average. On the other hand, for the largest
problem sizes (500 and 1,000 items), it was observed that most of the computational effort
was directed toward finding the first feasible solution, and a minimum of 2,000 subproblems
were enumerated in every such instance. In the case of the 500-item instances, we always
found an integer-feasible solution before reaching this limit and, consequently, we stopped
the procedure at or before this limit, whereas in the majority of the 1,000-item instances, we
could not find such a feasible solution before reaching the aforementioned limit, but we found
a feasible solution (in all but one instance) after analyzing an average of 3,514 subproblem
nodes. On the whole, for 79 of the 80 individual instances tested, it was observed that the
objective function value corresponding to the first feasible solution was always within 7%
of optimality. As far as the error in the category sales value is concerned, on average, we
achieved an error of 0.14% or less for all problem sizes (with a relatively limited deviation
from this mean value) while employing the chosen value of S = 4, which is well within the
acceptable practical range of allowable error.

4 Conclusions

We have proposed MIP formulations to model certain retail pricing problems that arise within
real-life analytic applications implemented at Oracle Corporation. A bi-level empirical pre-
dictive framework that includes a high-level price elasticity-based demand model, as well
as a multinomial logit-based market-share prediction model at the lower level, was embed-
ded within an optimization framework to formulate a discrete, nonlinear fractional program
(DNFP), which was subsequently transformed into an equivalent MIP having a relatively
tight underlying LP relaxation. Our empirical analysis using CPLEX 10.0 indicates that typ-
ical price-range restricted instances of Problem RPO that arise in practice, ranging up to a
thousand items in size, can be iteratively solved to near-optimality by incrementally tightening
the associated LP relaxation and re-optimizing the resultant MIP. Incremental improvements
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in solution quality and computational performance that can be achieved for such instances
by controlling the degree of approximation of the underlying nonlinear demand model have
to be weighed against the achieved level of error in the nonconvex constraints, such as those
involving sales and revenue targets that are derived from the demand model. Empirical evi-
dence suggests that an effective commercial optimization software package can handle most
of the practical scenarios encountered within an industrial implementation of our proposed
modeling approach.

For future research, we recommend the modeling and analysis of problems that consider
alternative price-elasticity based demand structures occurring in multiple sub-groups (see
Remark 1). The MNL model is a popular option for quantifying customer-choice in a variety
of other industries (e.g., travel). It is possible that the mathematical models described in
this paper, perhaps with some minor modifications, can be extended to solve similar prob-
lems in other industries. In the immediate retail context, category managers often have to
consider additional objectives arising from competition, product discounts, and assortment
decisions, which result in complex optimization models characterized by an increasing degree
of nonconvexity and non-separability of the objective function. Moreover, incorporating the
effects of uncertainty in the demand model parameters within the formulation can poten-
tially improve the robustness of the price recommendations. Although this would further
complicate the model, we expect that the effect of transforming such structures into more
manageable mathematical forms as done herein for Model RPO will be fruitful, and our
preliminary research work in this area has been encouraging.
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